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In view of the importance of gas electron diffraction to the precise determination of molecular
structure, a critical study is made of the method of least-squares analysis in order to attain as
statistically accurate results as possible from experimental data.

It is pointed out that ‘observations’ on the molecular intensity curve ¢M{(q) and on the radial
distribution curve f(r) should be regarded as ‘indirect’, if the criterion of least squares is applied
either to ¢M(g) or to f(r). A general formula for the weight function which is related to indirect
observations is derived, and it is shown by using the formula that there is intensive interdependence
among the nearest neighbors of f(r).

A practical method is devised for estimating a reasonable weight function for gM(g) from the
differences between the observed and calculated values of ¢M/(q).

It is remarked that the effect of anharmonicity parameters » on the internuclear distances » must
be taken into account even for non-hydride molecules in order to claim high accuracy for the
distances.

A method for estimating random errors by making use of the standard errors denoted as g, (the
internal consistency) and o, (the reproducibility) is proposed, and the importance of ¢, as a measure
of random errors is pointed out.

The method mentioned above is demonstrated by taking an example, silicon tetrachloride, and

the standard errors of the internuclear distances and the mean amplitudes are estimated.

The technique of gas electron diffraction has recently
reached the stage where internuclear distances and
mean vibrational amplitudes in polyatomic molecules
can be determined with experimental errors of a few
thousandths of 1 A. Such precise information is of
fundamental importance to structural chemistry,
since various subtle features of molecular structure,
e.g. the effect of molecular vibrations on the distances
are shown to be of this order of magnitude. Accord-
ingly, as extensively discussed at the International
Symposium on Electron Diffraction in Kyoto
(Proc. Intern. Conf. Mag. Crystallogr., 1962), one must
strive during the analysis of scattering intensities to
derive as reliable information as possible with an
estimated uncertainty which has full statistical
significance.

Application of the least-squares method to this
problem was initiated by Hamilton (1954), and later
extended by Bastiansen, Hedberg & Hedberg (1957).
The method was also applied to the radial distribution
curve with a slight modification by Bonham & Bartell
(1959). The present paper is concerned with a critical
study of the analytical procedures currently in use
in searching for a reasonable estimate of the most
probable values and the standard errors of molecular
parameters derived from experiment.

General principle of least squares

On the basic assumption that an ordinary theory of
errors is applicable to the measurement of scattering

intensities, the principle of least squares is con-
veniently formulated in matrix notation as stated by
Bastiansen, Hedberg & Hedberg (1957), Hedberg &
Iwasaki (1962, 1964), and Morino, Kuchitsu, Iijima
& Murata (1962). Let F be a set of calculated values
of the n observables expressed in an n row and one
column matrix whose elements are defined by a set
of linear combinations of m independent parameters;
it follows that

F=M-V=AX, (1)

where M, V, A, and X are matrices of the observa-
tions, the residuals, the coefficients, and the estimates
of the parameters, respectively. The condition of
least squares requires that

V*PV =minimum, or A*PV=0, 2)

where P is a weight matrix and is supposed to be
symmetric. By solving the normal equations,

BX=A*PM, where B=A*PA, (3)

unknown elements of X are determined. The standard
error o; of the element x; of the estimates X is given by

oi=(B 1)t [V¥PV/(n—m)]t. (4)

Since our problem deals with non-linear functions,
we start with a set of trial parameters Xo. The solutions
AX of the normal equations are added to the initial
Xp to obtain revised parameters, and the process is
recycled until the parameters X converge.
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Although the procedure described above is well
established in principle, several practical problems
must be handled carefully in its application. The
most important questions may be the following:

(a) How should the interval of observations and the
weight matrix be taken ?

(b) To what function should the observations be
fitted ?

(¢) How should random errors be estimated ?

Weight matrix

In any of the previous studies, the weight matrix was
assumed to be diagonal, and the elements were
assumed to form a uniform function of ¢ (or r), which
was introduced somewhat arbitrarily in conformance
with general experience. A typical function with an
exponential damping in large ¢ is shown in Fig. 1(a).

It will be shown in the following, however, that
the weight matrix for the radial distribution curve f(r)
may not be diagonal; nor may the weight for the
molecular intensity ¢M(g) be a uniform function of ¢,
even if the weight matrix for our initial observations
on the microphotometer trace is diagonal and uniform.
This is because our observations on gM(g) or on f(r)
must be regarded as ‘indirect’. Since we usually apply
the criterion of least squares (equation (2)) either to
gM(g) or to f(r), both of which are derived after
a series of manipulations from our original (direct)
measurement on the photometer trace, equations (3)
and (4) should be modified accordingly.

As explained in Appendix I, equations (1) through
(4) are essentially unchanged for indirect observations
provided that the weight matrix P is replaced by
a matrix TT which is given by

TT=(GP-1G¥)-, (5)

where G represents the matrix of derivatives which
combines the direct (M) and indirect (W) observations
by equation (4-1). If the dependence of @ on M is
known, G can be calculated by taking the derivatives.
Equation (5) is a useful relation for estimating the
weight matrix to be used in our analysis.

Since the elements of G for ¢M(g) (non-square in
this case) which refer to different ¢ values are all zero
(see Appendix II, equation (4-17)), the weight matrix
MM for ¢M(g) is diagonal if the original matrix P in
equation () is diagonal, and hence, if our observations
on the photometer chart are all mutually independent.
As far as this condition is satisfied, the decrease in
the interval of observations, Ag, and hence the increase
in the number of observations, will make the standard
error ¢; in equation (4) smaller. Obviously, however,
Agq should not be made smaller beyond a certain limit,
since correlation among the observations will then
become appreciable (Bastiansen, Hedberg & Hedberg,
1957). Off-diagonal elements, by which the correlation
can be dealt with, must therefore be introduced in
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Fig. 1. Typical weight matrices (a, b) for ¢gM(q) and (c) for f (7).
A portion of the matrix and all diagonal elements are given.
(a) Empirical smooth weight function commonly assumed.
(b) Weight function derived by the method described in
Appendix II. (¢) The matrix [Ty given in (4-27) of Appendix
III.

the weight matrix P. In order to avoid such a com-
plicated analysis, it is important to select an optimum
interval Ag, by which the analysis can be carried
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Fig. 2. Estimation of the standard error ¢,% for ¢M(q).
(a) Standard error oy of the measurement of the y coor-
dinates in the photometer chart. The unit of oy corresponds
to the minimum scale division at present in use in our
laboratory for measuring the y coordinate of the chart.
See Appendix II for further significance. Non-essential
irregularities which appear in the experimental oy
(shown in dots) are removed by drawing a smooth curve
across the fluctuations, as described in Appendix II.
(b) A plausible estimate of 0,2 obtained from (a) by the
use of equation (4-20) of Appendix II. Conspicuous jags
arise from the contributions of ¢4 in the regions where the
slope of the original y curve (shown in (c)) is steep.
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out with a diagonal weight matrix. The consideration
of the correlation of observations which leads to a
method for estimating a proper interval will be
discussed in our forthcoming paper (Murata & Morino,
to be published), where a diagonal weight matrix P
corresponding to the observations made at the interval
Ag=1 will be shown to be nearly optimum.

Random errors of measurement on the micro-
photometer curve originate on one hand from the
error Ay in the measurement of the ordinate of the
recorder chart, and on the other from the failure Ax
in the assignment of the correct abscissa to a pre-
determined ¢ scale. Errors which originate from both
Az and Ay are included in the standard error on
of ¢M(q). Even if Az and Ay are both constant every-
where on the chart, their contributions to on vary
from place to place in a manner dependent on the
slope of the photometer curve, as stated in Appendix
I1. It may be shown, therefore, that the diagonal
elements of TT,, which reflect the reliability of our
observations on ¢M(g), do not lie on a uniform
funection of ¢, but they fluctuate with a period similar
to that of y as illustrated in Figs. 1(b) and 2(c).
A reasonable weight matrix T, can be estimated
from experimental ¢» by eliminating non-essential
irregularities. The process is given in Appendix II.
Fig. 2 shows a typical example of the dependence of
0%, on g taken from our recent work on silicon tetra-
chloride (Morino & Murata, 1965).

The weight matrix TI; for the radial distribution
function, f(r), on the other hand, has off-diagonal
elements, which indicate that any two ‘indirect’
observations on f(r), say f(r) and f(r+ Ar), may be

Table 1. Dependence of least-squares outputs (most probable values and standard errors)
on the choice of weight functions (for silicon tetrachloride, in A)

(a) Least-squares analysis on ¢M(g)*

r(Si-Cl) 7(Cl-Cl)
A 2:0180 + 0-0004 3-2932 + 0-0008
B 2:0178 +0-0005 3-2936 + 0-0010
(o] 2-:0177 + 0-0005 3-295040-0010

* Derived by using the weight functions 4, B, and C.

1(Si-C1)
0-0488 + 0-0007
0-0478 + 0-0009
0-0468 + 0-0010

I(CI-CI)
0-0894+0-0011
0-0888 +0-0014
0-0884 +0-0014

A: Obtained by the process described in Appendix II (Fig. 1(b)).
B: The same as A4, but the fluctuations of 4 are arbitrarily smoothed.
C': An empirical weight function assumed a priori (Fig. 1(a)).

(b) Least-squares analysis on f(r)} (r=0-05~ 4-00 A; 4r=0-05 A)

(Si-Cl) 7(CL-Cl) 1(Si-C1) 1(C1-Cl)

I 2:0175 + 0-0005 3-2927+ 0-0010 0-0474 + 0-0010 0-0887 +0-0013
II 2.0173 + 0-0007 3-2957 + 0-0010 0-0459 + 0-0013 0-0887 + 0-0013
I 2-0173 + 0-0010 3-2957 + 0-0009 0-0459 + 0-0019 0-0891 + 0-0011
v 2:0173 + 0-0006 3-2957 + 0-0012 0-0459 +0-0012 0-0885 + 0-0015

T Analyzed by using the weight matrices I, II, III, and IV.
I: A non-diagonal weight matrix given in equation (4-27) and Fig. 1(c).

II: The diagonal unit matrix (Py=3J;).
III:
IV:

A diagonal matrix derived by the law of the propagation of errors: [(GPXG*);]71. (Pis=04/r;).
The diagonal matrix employed by Bonham & Bartell (1959) (Py;=7;20;).
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‘dependent’. This situation stems from the fact that
both f(r) and f(r+ Ar) are functions of all observations
on qM(q). For the example given in Appendix III,
the matrix TT; has a simple form as illustrated in
Fig. 1(c). In that particular case, the ratio of the
off-diagonal elements for the nearest neighbors to the
diagonal is —$}. Although TT; may in general have a
more complicated form, it is readily calculated from
equation (5) by using an electronic computer. It is
likely that the correlation between f(r) and f(r+ Ar)
fades out rapidly as the interval Ar increases, but the
off-diagonal elements among the nearest neighbors
cannot be ignored.

We ordinarily apply the least-squares method to the
molecular intensitv curve rather than to the radial
distribution curve, because in the former procedure
it is not necessary to take into account the molecular
intensity in the region of ¢ where no experimental
data are available (e.g. ¢<10 and ¢ 100), and
because the weight matrix can be taken as diagonal
if observations are made at a proper interval.

It is pertinent to examine how the outputs of our
least-squares analysis (most probable values and their
standard errors) are dependent on the change in the
weight functions. It may be seen from the example
given in Table 1 that in this case the outputs are
sensitive to the choice of the weights only by as
much as their standard errors, and the use of a
conventional weight function (Fig. 1(a)) is seemingly
justified. The situation, however, depends in general
on the quality of the experiment, and the importance
of estimating a proper weight function should not be
overlooked, particularly if one is concerned with a
small difference in the parameters such as a shrinkage
effect (Morino, Nakamura & Moore, 1962; Morino,
Cyvin, Kuchitsu & Iijima, 1962).

Parameters to be determined

It is well known that to a good approximation the
molecular intensity curve has the following expression
(Bartell, 1955; Morino, Nakamura & Iijima, 1960),
if the influence of the relative phase shift A% can
be included in the effective parameter I,

qM(q)= X ki(A:[r:) exp (— 7n*13¢%/200)
' x sin (71g/10)(r; — 722:q2/100) .  (6)

Accordingly, variable parameters to be determined
in the analysis are the distances 7; (the r, parameters
(Morino & Iijima, 1962) which are essentially equal
to Bartell’s 74(1) (1955)), the mean amplitudes I,
the anharmonicity parameters »; and the indices of
resolution k;. It is seen from equation (6) that the
parameters r; are correlated strongly with »x;, and
also I; with k;. Since the parameters x; for non-
hydrogen distances are generally small, it often
happens that they cannot be determined in a statistical
sense (Morino, Nakamura & Iijima, 1960; Morino &
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lijima, 1962). In view of the heavy interdependence
between r; and x;, however, the latter should not
simply be set equal to zero even for non-hydride
molecules. Instead, »; must be included at least as
a finite constant, the order of which may be reasonably
estimated by approximate theoretical considerations
(Bartell, Kuchitsu & deNecui, 1961; Kuchitsu &
Bartell, 1961; Morino & Iijima, 1962).

It seems better to take each index k; as an inde-
pendent variable parameter than to assume that they
are equal for all atom pairs to be determined. In
many cases, however, all indices are shown to be
nearly equal, with standard errors for /; and k; some-
what larger than those derived when they are all
set equal,* as shown in a typical example of our
results of silicon tetrachloride listed in Table 2.

Table 2. Dependence of least-squares outputs on the
choice of variable parameters
(8iCly; r and I in A)*
Para-

meterst 7(Si-Cl)

2-0180 + 0-0004
2:0180 % 0-0004
2-0176 + 0-0004
20176 + 0-0004
2:0188 + 0-0008

#(Cl-Cl)

3-2932 + 0-0008
3:2932 + 0-:0008
3:2916 + 0-0008
3-2916 + 0-0008
3:2955 + 0-0016

1(Si-C1)

0:0488 + 0-0007
0-0485 + 0-0007
0-0488 + 0-0008
0:0485 + 0-0007
0-0487 + 0-0007

RO
2SR
AN~ S -G Y

{(CI-Cl) k(Si-Cl) k(CI-Cl)

A 0-0894 +0-0011  1-081+0:011 1-061+0-018

D 0-:0902 + 0-0007 1:076 + 0-009

E 0-0894+0-0011  1-082+0-012 1-060+0-019

F 0-0902 + 0-0008 1-:076 + 0-010

G 0-0895+0-0011 1-081+0-011 1-063+0-018
* Based on the weight function 4 given in Fig. 1(b).
t a: Indices of resolution k; varied independently.

b: Both indices taken to be equal and varied.

¢: Anharmonicity parameters x; taken as constant by

a crude theoretical estimation: (Si-Cl)=1-2 x 108,
and »(Cl-Cl)=17-1x 10~ in A3 units.
d: »; assumed to be zero.
e: x; taken as variable parameters, the outputs being:
#(81-Cl) = (3:3 £ 2:0) x 10~%, and »(CI1-Cl)=(17-3 + 6-3)
x 1678,
The discrepancy between x(Cl-Cl) and that estimated
in ¢ is not to be taken as very significant. The un-
certainty of the distances caused by the error in the
estimation of x is included in the standard error ¢
(systematic) given in Table 4.

Estimation of random errors

A primary basis for estimating random errors is given
by the standard error in equation (4), which we
designate as 01. It depends on the discrepancy between
our observations and the theoretical molecular inten-
sity curve (6) for which an optimized set of parameters

* Care should be taken because, for one of the two variable
parameters which are closely correlated with each other,
an improperly smaller standard error is obtained when the
other is taken as constant than when it is varied. {(Anderson
(1958), as cited by Geller (1961)). The situation is shown in
Table 2 for » and », and for I and k.
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Fig. 3. Least-squares fit on ¢M(g) for silicon tetrachloride.
Solid curve represents the theoretical molecular intensity
for which the sum of the weighted square deviations from
the observations (shown in dots) is minimized.

are chosen, as illustrated in Fig. 3. While ¢, is a useful
indicator of the quality of the observations, it does
not necessarily reveal all non-systematic errors. As
another useful measure of the random errors, we may
consider a standard deviation, o2, among the most
probable values of the parameters obtained from a
number of independent sets of observations, i.e. from
N photographic plates which are taken under as
nearly identical experimental conditions as possible
and are analyzed individually by the standard process
mentioned above. The measures of the random errors,
o1 (the internal consistency) and o2 (the repro-
ducibility), should be of nearly equal magnitude,
if the number N is sufficiently large, and if there is
no systematic deviation among the plates so that all
observations on N plates belong to a single statistical
population.* For the mean amplitudes /;, we usually
obtain o2 which is of the same magnitude as o1
(see Table 4). It sometimes happens, however, that
the o for the distance parameters r; is somewhat
larger than o1, because systematic errors (such as the
error of the scale factor, and the error characteristic
of any one of the photographic plates), which may not
always be eliminated and which are not included in o1,
contribute to g2. In such a case, an analysis based
on an average curve of N intensities will not lead to
a correct estimation of the parameters and their
errors; it is therefore important to evaluate o2 by
a set of individual analyses of N individual intensity
curves.

By taking o2, one can find out on the basis of the
discrepancy between o1 and g2 whether some hidden
systematic errors are present in the observations,
and whether the estimation of ¢, has any imperfection
that makes o1 of less statistical significance, such as
the use of an improper interval for the diagonal
weight function. The estimates o1 and o2 for the
random errors can be regarded as adequate if they
turn out to be nearly equal, but if not, it seems
appropriate to take whichever is larger as a standard

* For the observations on N sets of plates, the o, for the
most probable values of the parameters may be taken as
1/VN times the individual standard deviation since in general
they are all nearly equal.
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error o, after a careful examination of both ¢; and o2
in regard to the origin of the discrepancy mentioned
above.

It is also important to include in the estimates of
the crrors the uncertainties in the corrections for such
various systematic errors (Kuchitsu, 1959; Morino &
Tijima, 1962) as are listed in Table 3. When the
magnitude of the uncertainties of the correction is
not known, it is presumed to be about 509, or some-
times 100%, of the original correction. An example
of our estimates for the random errors is given in
Table 4.

Table 3. Principal origins of systematic errors

Experimental: Drift of the accelerating voltage

Errors in the measurement of the wavelength

Uncertainty in the camera length

Imperfections in the sector shape

Finite sample size

Irregularity in the g scale of the photometer
chart

Irregularity in the experimental background
function

Theoretical : Failure of the Born approximation
Uncertainties in the elastic and inelastic
scattering factors

Effect of anharmonicity

Table 4. Estimation of the errors in the parameters
(SiCly; in A)

0, Oy o(syst.)* o(total)
7(Si-Cl) 0-0003 0-0010 0-0009 0-0014
7(CI-Cl) 0-0006 0-0018 0-0017 0-0025
[(Si-Cl) 0-0005 0-0006 0-0002 0-0006
[(C1-C]) 0-0007 0-0009 0-0003 0-0010

* Uncertainties in the corrections for systematic errors.
Principal origins of o(systematic) in this case are the following
(see Table 3):

Internuclear distances #(Si-Cl) r(C1-Cl)
Errors in the measurement of the

wavelength 0-0004 0-0007
Drift of the accelerating voltage

(max. 0-05%) 0-0004 0-0007

Uncertainty in the camera length 0-0006 0-0010

Uncertainty in the parameter » 0-0004 0-0010

Total 0-0009 0-0017

Mean amplitudes [(Si-Cl) [(C1-Cl)

Effect of the finite sample size 0-0002 0:0003

In some cases, it is convenient to represent the
‘limit of error’ as +2-50, which specifies the 999
confidence interval, in the sense that the probability
of finding the result outside this range is only less
than 1% (Morino & Iijima, 1962).

Concluding remarks

As is well known, an ultimate appraisal of the accuracy
of our experimental and statistical method should be
made possible by a comparative study of molecules
whose structures are exactly known by spectroscopic
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studies. Since the theoretical background which
correlates the parameters obtained by electron dif-
fraction with the spectroscopic parameters has now
been established both for diatomic (Bartell, 1955) and
for polyatomic molecules (Morino, Kuchitsu & Oka,
1962), there should be no ambiguity in principle
in this comparison. A systematic study for this
purpose is now being undertaken in our laboratory,
and the result will be published in the near future.
For the carbon disulfide molecule which we have
studied so far, the agreement of the distances, the
mean amplitudes, and the shrinkage effect with the
corresponding spectroscopic values within the claimed
uncertainties is encouraging, as shown in Table 4
of the paper by Morino & lijima (1962).

APPENDIX I

Weight matrix for indirect observations

Suppose a set of indirect observations p is derived
from a set of direct observations M by linear com-
binations:

u=GM. (4-1)

By operating G on equation (1) of the text and by
denoting GF, GV, and GA by ¢, & and o respec-
tively, we get

¢=p—e=0oX, (4-2)

which is in a style similar to equation (1). Since the
condition of least squares should exist among the
residuals for the direct observations, the condition
should be the same as that given by equation (2),

V*PV =minimum.
Our problem is to find a matrix TT in the expression

e*[Te =minimum,
that is,

o*ToX = o*TTy , (A4-3)

so that the normal equations in terms of o and p
may be obtained. While G is in general a non-square
matrix, the problem is conveniently handled by
means of Lagrange’s method of undetermined mul-
tipliers. The condition is given by

Y =V*PV/2 + A*®=minimum, (4—4)
where
O=p—e—aX=0. (4-5)
By taking partial derivatives, it is shown that
V[ oV=V*P-N\*G=0, (4-6)
and accordingly,
N*=V*G*(GP-1G*)1=¢*(GP-1G*)-1, (4-7)
and that
oY/ 0X=—-N*a=0, or a*A\=0. (4-8)
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Since P is in general a symmetrical matrix, equations
(A-T7) and (4-8) lead to

o*(GP-1G¥*)-1g=0 , (4-9)

and hence, the following set of normal equations
may be obtained from equation (4-2),

oa*(GP1G*)1oX =o*(GP-1G*)1n. (4-10)
Consequently, the least-squares process for indirect
observations can be made analogous to that for direct
observations, provided that the weight matrix is
taken as

MT=(GP-1G*)-, (4-11)
As may be seen from the derivation of equation
(4-7) from (4-6), the number of the observations p
should not exceed that of M in order that the matrix
(GP-1G*) may be non-singular.

Although our data are represented by non-linear
equations, it is well known that the first-order Taylor
expansion makes the present argument hold without
modification, if the parameters X, the observations
M or p, and the matrix G are regarded as the correc-
tions to the trial parameters, the difference between
the observed and the trial values, and the relevant
derivative matrix, respectively. It can also be shown
that the standard error is given by an equation
analogous to equation (4) with corresponding changes
in the notation.

The general formula (4-11) covers the following
casest for deriving proper weight matrices TI.

(@) When the column matrices of observations,
M and y, are related to each other by one-to-one
correspondence, ¢.e. when any one of the y elements,
i, depends on only one of the M elements, M;,

and vice versa, the matrix G may be taken as diagonal;
it obviously follows that TT is diagonal if P is diagonal,

I1j;=Pu/(Gse)> (4-12)

() When any one of the M elements, M3, is related
to only one of the p elements, yu;, whereas one of the
u elements, yj, is related to more than one M element,
say Ms, Mis1, - ... Miyn, G is a rectangular matrix
with zero cross elements (G4 =0 for £ =j and
l=1,7+1, ...,i+n, and for k=jand I<? or I>i+n).
If P is diagonal, equation (4A-11) leads to a diagonal TT.
The procedure is equivalent to that of the least squares
where restrictive conditions are present. An example
of this case is given in Appendix II, where a method
similar to Deming’s curve fitting is applied to the
measurements of z, ¥ coordinates, in both of which
experimental errors are involved (Deming, 1946).

(c) When one of the M elements is related to more
than one p element, off diagonal elements appear in TT
even if P is diagonal; the observations p are no longer

1 When the matrix 1T is diagonal, as mentioned in cases
(a) and (b), equation (4-11) represents the ordinary law of
propagation of errors.
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mutually independent. An example of this case is
given in Appendix III, where a non-diagonal weight
matrix [Ty for the radial distribution curve f(r) is
derived.

APPENDIX II
Estimation of the weight function IT,,, for ¢M(q)

In the sector-microphotometer method of gas electron
diffraction, one makes direct observations on the
z and y values of the photometer record at a certain
prescribed interval. With allowance for the errors
in the measurements of both x and y coordinates,
Az; and Ay; respectively, the least-squares criterion
for a curve fitting is given by

2 (pziAx? 4 pyiAy?) = minimum. (4-13)

The weight functions p- and p, must be so taken
that they are inversely proportional to the squared
standard errors of the measurement of x and y values
respectively. The weight functions p, and p, may
be estimated with less difficulty than that for
qM(q), TTm, since the former are related to the direct
observables x and y, and since they are likely to be
smooth and uniform; it is also easier to interpret
the physical significance of the p and p, which are
determined by an empirical procedure.

Our primary problem is to find the matrix G
which relates ¢M(q) with =z and y. The indirect
observations u on ¢M(q) are written as the following
difference,

p=qM(q)°rs—qM(g)e=c, (A-14)

since this is a non-linear case. The functional depen-
dence of x on z and y is given by the following rela-
tions.

qM (g)evs=q(I:/Iy—1)=g{[F logio(yoly) — L}/ Iv—1} ,
(A-15)
and
g(x)=(40/2) sin [} tan~? (z/azL)],

where the symbols have the following meaning:

(4-16)

x: the x distance on the photometer trace from the
center,

y and yo: the y distances of the record and the bright
line, respectively, from the dark line on the
photometer trace,

I, Iy, and I,: the intensities of the total scattering,
the background, and the extraneous scattering
respectively,

F: the density-intensity calibration function, taken
as unity in the present study (Morino & Iijima,
1962),

gM(g)e2le: the molecular intensity calculated by using
equation (6) with assumed values of the para-
meters,

az: the ratio of the z scale of the chart to that of the
original photographic plate (10 in this case),
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L: the camera distance, and
A: the electron wavelength.

For the u given in equation (4-14), the matrix G
takes the following expression,*

(Gey Gy 0 0 0 0

1 0 0 Gz, Gy, O 0 ...
G—I 0 0 0 0 Gg Gy ... ... | 1D
where
0om (L) e Ll dgigony]
dx |\Lv -Ib dq ]bdq dq
(A-18)

Gy=(q/lvay) (01 0y)e= —q logio e/ Ivayy , (A-19)

and ay is the degree of linear expansion of the record
in the y direction (about 5 in this case).

According to equations (4-11) through (A4-19),
the weight matrix 1T, of a diagonal form is obtained,

(T n)i* = %05 + Gopydt, (A-20)
and hence the standard error o of ¢M(g) is given by
o5,=G%05+G%a3 , (4-21)

where 6zand oy are the standard errors of the measure-
ment of the x and y values respectively. (See footnote,
p. 554.)

The magnitude of G5 is especially sensitive to the
slope of the photometer curve, and the contribution
from ¢ is important in the region where the y curve
is steep. Then o is expected to be larger, and hence,
a less weight is to be assigned to the observations
of gM(q) in that region. This is the principal origin
of the fluctuation of T1, with ¢ mentioned in the text.
An example is given in Fig. 2.

A reasonable weight function T, may be estimated
by eliminating accidental irregularities from the
experimental on by the following steps:

(@) Molecular intensity curves obtained from a
number of photographic plates are processed separately
by the least-squares method by taking an initial
weight function.

(b) The standard error o is assigned to ¢M(q) for
each ¢ by taking the square of the difference between
the observed and calculated gM(q) for several plates
(z.e. the expectation of the square of residuals).

* The background I, depends on y, since I, is drawn
empirically through the observed y values. For the present
problem, however, Iy ought to have no ‘explicit’ dependence
on y. That is, the errors Ay do not interfere with the drawing
of the Ip, and therefore 0lp/cy=0, since the errors Ay fluc-
tuate randomly around the true values, and since I should
be a smooth function. It is readily shown from equations
(A-18) and (4-19) that Gz=(dy/dr)Gy; this agrees with the
following simple reasoning of the origin of Gy. Suppose the
measurement of z is in error by Az. The measurement of y
must then be in error by (4y),=(dy/dx)Ax, which will cause
gM(q)°Ps to be in error by Gzdx=Gy(dy),=Gy(dy/dz)Ax.
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(¢) The standard error ¢z, which may be taken as
constant through the photometer chart, is estimated
by experience.*

(d) By subtracting the contribution of o2 from
0%, o> is obtained for each ¢ by using equation
(4-21).7 Since oy is considered to be a slowly changing
function of ¢, the gy thus derived is made smooth
by ignoring non-essential irregularities. (See Fig. 2(a)).

(e) The standard error ¢, is obtained from the
smoothed oy(q) by using the same equation (4-21),
as shown in Fig.2(b), and ITn(q) is taken to be o2
(Fig. 1(b)).

(f) The weight function is made self-consistent,
if necessary, by a recycle in which the weight function
1T obtained in (e) is used in the step (a). Most portions
of the above steps can be automatized by the use of
an electronic computer.

APPENDIX III

A weight matrix I7; for the radial
distribution curve

Let us take an example in which the weight function
MM for gM(q) is represented as

T (g, ¢')=g* exp (—2bg?)0qqr - (4-22)

Since f(r) is given by

70y = a31(q) exp (=bg?) sin (gr/10)dg

= X qM(q) exp (—bg?) sin (mgr/10) , (4-23)
q9

the elements of the matrix G are shown to be

G(r, ¢)=exp (—bq?) sin (;qr/10) .  (A-24)

It follows from equation (5) of the text that

* The standard error o, is taken as the minimum scale
division s; (0-1 mm) at present in use in our laboratory for
measuring the 2 coordinate of the photometer chart. (The
record is usually subject to a mechanical linear magnification
of ten times the x scale on the original photographic plate.)
By changing the o; values, it is found that the feature of
jags which appear in the resulting o,,% depends on og; the
output parameters of the least-squares analysis, however,
are not sensitive to the choice of 6. The o taken as sy is
regarded as reasonable in this case since the peak values
of the resulting 0,2 in the regions where the effect of oy is

large are nearly equal to those of the observed op? curve.
One could expect an ideal ¢z to be about s;/2; this, however,
results in a somewhat worse correspondence with the peak
values of the observed op? indicating that the presence of
other random errors makes the o, to be nearly equal to s;.

1 For the example given in Fig. 2, the ordinate scale unit
of oy is taken as the minimum scale division (1/1000 of the
chart full scale, 24 cm) at present in use in our laboratory
for measuring the y coordinate of the chart. (The record is
usually subject to an electronic linear magnification of about
five times the original y scale.) The random experimental
error of the measurement ¢y is therefore shown to be com-
parable with the uncertainty associated with the minimum
scale division.

ANALYSIS OF GAS ELECTRON DIFFRACTION DATA

M7 (r, ') = [GIT,'G*](r, 7

= Sooq—z sin (7gr/10) sin (7gr'/10)dq
o

= (2%/20) min (r, ) . (4-25)
The matrix TT;? is therefore
nn o nmnonn
rL re Tre re re
Mt =az20 |7t T 78 7a 7o (4-26)

1 T2 73 T4 T4
1 T2 73 T4 T35

By denoting the difference rp41—72 as Ar and
taking the inverse, it is shown that the weight matrix
Ty is given by the following simple form

refri =1 0 0 ... ...l
-1 2 -1 0 ..ciiiiiinnn.
0 -1 2 -1 ...
20 0 0-1 2 ............
nf_nzdr ..............................
i 021 2 10
................ 0 0-1 1

(A-27)

In this case, all diagonal elements are equal except
for those at both ends, the differences being trivial
for the present consideration. Thus the ratio of the
off-diagonal elements for the nearest neighbors to
the diagonal is —%, and all other off-diagonals are
Zero.

The authors are indebted to Prof. J. Kakinoki and
Drs T. Ino and K. Katada of Osaka City University
for their valuable criticism and advice. They are also
indebted to the Ministry of Education of Japan for
the research grant.
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The space group of LaAlO; below 720 °K, and the compounds NdAl1O; and PrAlO;, probably
isomorphous at room temperature. By B.DeriGHETTI, J. E. DRUMHEELLER, F.LavEs, K. A. MULLER
and F. WALDNER, Physik-Institut der Universitit Ziirich, Institut fiir Kristallographie und Petrographie der ETH
Ziirich, and IBM Ziirich, Research Laboratory Riischlikon, Switzerland

(Received 20 August 1964)

Geller & Bala (1956) investigated LaAlO; by X-rays
and found a symmetry change at 720 °K (independently
confirming results of Grénicher & Miiller, 1957). Whereas
LaAlO; has the ideal perovskite structure (i.e. cubic
with one formula unit per cell) above this temperature,
a rhombohedral deformation takes place at 720 °K con-
tinuously increasing with decreasing temperature. In
addition, extra reflexions observed at room temperature
indicated a doubling of the rhombohedral ¢ axis. Geller &
Bala proposed as most probable the space group R3m (D3q)
with La in (¢) —3m (0, 0, 2), Al in (@) —3m (0, 0, 0) and
(6) —3m (0,0, %), and O in (k) —m * (¢F2; @, 2, 2; 27,7, 2)
if hexagonal axes are chosen. On the other hand, con-
sistent with their published X-ray data the space group
R3c (DY) with La in (a)~32 +(0,0, 1), Al in (b)—3
(0,0,0; 0,0,%) and O in (e)—2 +(x,0,%; 0,2, }: .7 1)
would also be possible. In R3m three parameters would
be needed to characterize the structure; however, only
one would be needed in RB3c, and the Al positions would
be equivalent.

The nuclear quadrupole resonance measurements of
139, and 27Al (Miiller, Brun, Derighetti, Drumheller &
Waldner, 1964) and the electron paramagnetic measure-
ments of crystals doped with Gd3+, Cr3+ (Kiro, Low &
Zusman, 1963) and Fe3+ (Miller el al., 1964) give in-
formation on the point symmetry of the La and Al
positions and indicate that the space group R3m is
improbable. From the data on 13¥La and Gd®t one sees
one La site, its surroundings being axially deformed.
The data on 27Al and Cr3®+ show also only one Al site
with axially deformed surroundings. The electron para-
magnetic resonance spectrum of Fe?t consists of two
sets of lines showing two sets of cubic axes rotated
along the rhombohedral ¢ axis, whereas the distances
to the nearest neighbours seem to be equal for both
sets. The rotation angle +o is measured to be 6-0° +0-2°
at 298°+3 °K.

AC18—36

Thus, a structure with equivalent La sites and equiva-
lent Al sites would be more consistent with the measure-
ments mentioned above. Ouly two space groups, R3c
and R3c, would conform with the X.ray data and the
resonance data. Further, the observed two sets in the
Fe3+ spectrum could be attributed to the two types of
equivalent Al positions which would have in both space
groups rotated near-octahedral surroundings related by
glide planes. As there are no data yet known to neces-
sitate the assumption of R3¢ we propose R3c as the
most probable space group for LaAlO;.

The oxygen parameter z# % is still unknown but
should be strongly temperature dependent. A calcula-
tion from the angle « of the Fe3t+ spectrum would give
x=0-53 at room temperature in hexagonal coordinates,
if one neglects possible structure deformations by the
impurity ion.

From a crystal-chemistry point of view it is interesting
to note that the more x deviates from § the more the
La coordination number deviates from 12 (in the ideal
perovskite structure) to 9. As the compounds NdAIO,
and PrAlO, are reported to be isomorphous with LaAlO,
(Geller & Bala, 1956) it is probable that they too have
the space group R3c.

The authors are indebted to R. Jansen and F. Forrat
for preparing the Fe3+.doped LaAlO; crystal.
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