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In view of the importance of gas electron diffraction to the precise determination of molecular 
structure, a critical s tudy is made of the method of least-squares analysis in order to a t ta in  as 
statistically accurate results as possible from experimental data. 

I t  is pointed out tha t  'observations' on the molecular intensity curve qM(q) and on the radial 
distribution curve f(r) should be regarded as 'indirect', if the criterion of least squares is applied 
either to qM(q) or to f(r). A general formula for the weight function which is related to indirect 
observations is derived, and it is shown by using the formula tha t  there is intensive interdependence 
among the nearest neighbors of f(r). 

A practical method is devised for estimating a reasonable weight function for qM(q) from the 
differences between the observed and calculated values of qM(q). 

I t  is remarked tha t  the effect of anharmonicity parameters u on the internuclear distances r must 
be taken into account even for non-hydride molecules in order to claim high accuracy for the 
distances. 

A method for estimating random errors by making use of the s tandard errors denoted as a 1 (the 
internal consistency) and a~ (the reproducibility) is proposed, and the importance of a 2 as a measure 
of random errors is pointed out. 

The method mentioned above is demonstrated by taking an example, silicon tetrachloride, and 
the standard errors of the internuclear distances and the mean amplitudes are estimated. 

The technique of gas electron diffraction has recent ly 
reached the  stage where internuclear  distances and 
mean  vibrat ional  ampli tudes in polyatomic molecules 
can be determined with experimental  errors of a few 
thousandths  of 1 A. Such precise informat ion is of 
fundamenta l  impor tance  to s t ructura l  chemistry,  
since various subtle features  of molecular s t ructure,  
e.g. the  effect of molecular vibrat ions on the  distances 
are shown to be of this order of magnitude.  Accord- 
ingly, as extensively discussed a t  the  In te rna t iona l  
Symposium on Elect ron Diffract ion in K y o t o  
(Proc. Intern. Conf. Mat. Crystallogr., 1962), one must  
str ive during the  analysis of scat tering intensities to 
derive as reliable information as possible with an 
es t imated uncer t a in ty  which has full stat ist ical  
significance. 

Applicat ion of the  least-squares method  to this 
problem was ini t iated by  Hami l ton  (1954), and  later  
extended by  Bast iansen,  Hedberg  & Hedberg  (1957). 
The method  was also applied to the  radial  distr ibution 
curve with a slight modification by  Bonham & Bartel l  
(1959). The present  paper  is concerned with a critical 
s tudy  of the  analyt ical  procedures current ly  in use 
in searching for a reasonable est imate  of the  most  
probable values and the  s t andard  errors of molecular 
paramete rs  derived from experiment.  

General  pr inciple  of least  squares  

On the basic assumpt ion t h a t  an ord inary  theory  of 
errors is applicable to the  measurement  of scat ter ing 

intensities, the  principle of least squares is con- 
venient ly  formulated  in ma t r ix  nota t ion  as s ta ted  by  
Bast iansen,  Hedberg  & Hedberg  (1957), Hedberg  & 
Iwasaki  (1962, 1964), and Morino, Kuchi tsu ,  I i j ima 
& Mura ta  (1962). Let  F be a set of calculated values 
of the  n observables expressed in an n row and one 
column mat r ix  whose elements are defined by  a set 
of linear combinations of m independent  pa ramete r s ;  
it follows t h a t  

F = M - V = A X ,  (1) 

where M, V, A, and X are matrices of the  observa- 
tions, the residuals, the coefficients, and the  est imates 
of the parameters ,  respectively. The condition of 
least squares requires t h a t  

V * P V  = minimum,  or A * P V - -  0 ,  (2) 

where P is a weight ma t r ix  and is supposed to be 
symmetric .  By  solving the  normal  equations,  

B X - - - A * P M ,  where B = A * P A ,  (3) 

unknown elements of X are determined.  The s t andard  
error (r, of the element x, of the est imates X is given by  

(ri= (B-1)u ½ [ V * P V / ( n -  m)]½. (4) 

Since our problem deals with non-linear functions, 
we s ta r t  with a set of trial parameters  X0. The solutions 
A X of the  normal  equations are added to the  initial 
X0 to obtain  revised parameters ,  and the  process is 
recycled unti l  the  paramete rs  X converge. 



550 A N A L Y S I S  OF GAS E L E C T R O N  D I F F R A C T I O N  DATA 

Although the procedure described above is well 
established in principle, several practical problems 
must  be handled carefully in its application. The 
most important  questions may be the following: 

(a) How should the interval of observations and the 
weight matrix be taken ? 

(b) To what  function should the observations be 
fitted ? 

(c) How should random errors be estimated ? 

Weight matrix 

In  any of the previous studies, the weight matrix was 
assumed to be diagonal, and the elements were 
assumed to form a uniform function of q (or r), which 
was introduced somewhat arbitrarily in conformance 
with general experience. A typical function with an 
exponential damping in large q is shown in Fig. l(a). 

I t  will be shown in the following, however, tha t  
the weight matrix for the radial distribution curve f(r) 
may not be diagonal; nor may the weight for the 
molecular intensity qM(q) be a uniform function of q, 
even if the weight matrix for our initial observations 
on the mierophotometer trace is diagonal and uniform. 
This is because our observations on qM(q) or on f(r) 
must be regarded as 'indirect'. Since we usually apply 
the criterion of least squares (equation (2)) either to 
qM(q) or to f(r),  both of which are derived after 
a series of manipulations from our original (direct) 
measurement on the photometer trace, equations (3) 
and (4) should be modified accordingly. 

As explained in Appendix I, equations (1) through 
(4) are essentially unchanged for indirect observations 
provided tha t  the weight matrix P is replaced by 
a matrix 1-[ which is given by 

1-[ = (GP-1G*) -z, (5) 

where G represents the matrix of derivatives which 
combines the direct (M) and indirect (~) observations 
by equation (A-l) .  If the dependence of ~ on M is 
known, G can be calculated by taking the derivatives. 
Equation (5) is a useful relation for estimating the 
weight matrix to be used in our analysis. 

Since the elements of G for qM(q) (non-square in 
this case) which refer to different q values are all zero 
(see Appendix II,  equation (A-17)), the weight matrix 
l-Ira for qM(q) is diagonal if the original matrix P in 
equation (5) is diagonal, and hence, if our observations 
on the photometer chart are all mutually independent. 
As far as this condition is satisfied, the decrease in 
the interval of observations, Aq, and hence the increase 
in the number of observations, will make the standard 
error ~i in equation (4) smaller. Obviously, however, 
Aq should not be made smaller beyond a certain limit, 
since correlation among the observations will then 
become appreciable (Bastiansen, Hedberg & Hedberg, 
1957). Off-diagonal elements, by which the correlation 
can be dealt with, must therefore be introduced in 
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Fig. 1. Typical weight matrices (a, b) for qM(q) and (c) for f ( r ) .  
A portion of the matr ix and all diagonal elements are given. 
(a) Empirical smooth weight function commonly assumed. 
(b) Weight function derived by the method described in 
Appendix II .  (c) The matrix Nf given in (A-27) of Appendix 
I I I .  

the weight matrix P. In order to avoid such a com- 
plicated analysis, it is important to select an optimum 
interval A q, by which the analysis can be carried 
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]?ig. 2. E s t i m a t i o n  of the  s t anda rd  error  O'm 2 for qM(q). 
(a) S t a n d a r d  error  ~y of the  m e a s u r e m e n t  of the  y coor- 
d ina tes  in the  p h o t o m e t e r  chart .  The  un i t  of ay corresponds  
to the  min imum scale division a t  p resen t  in use in our  
l a b o r a t o r y  for  measur ing  the  y coord ina te  of the  chart .  
See Append ix  I I  for fu r ther  significance. Non-essent ia l  
i rregulari t ies  which appea r  in the  exper imenta l  ay 
(shown in dots)  are r emoved  b y  drawing  a smooth  curve  
across  the  f luc tua t ions ,  as descr ibed in Append ix  I I .  
(b) A plausible  e s t ima te  of ~m ~ ob ta ined  f rom (a) b y  the  
use  of equa t ion  (A-20) of Append ix  I I .  Conspicuous jags  
arise f rom the  con t r ibu t ions  of ax in the  regions where  the  
s lope of the  original y curve  (shown in (c)) is steep.  

out with a diagonal weight matr ix.  The consideration 
of the correlation of observations which leads to a 
method for es t imat ing a proper interval  will be 
discussed in our forthcoming paper (Murata & Merino, 
to be published),  where a diagonal weight mat r ix  P 
corresponding to the observations made at  the  in terval  
A q = 1 will be shown to be near ly  opt imum. 

R a n d o m  errors of measurement  on the micro- 
photometer  curve originate on one hand  from the  
error A y in the  measurement  of the ordinate of the 
recorder chart,  and  on the other from the failure Ax 
in the  assignment  of the correct abscissa to a pre- 
de te rmined  q scale. Errors which originate from both 
Ax and Ay are included in the  s tandard  error am 
of qM(q). Even  if Ax and Ay are both  constant  every- 
where on the chart,  their  contr ibut ions to am vary  
from place to place in a manner  dependent  on the 
slope of the photometer  curve, as s tated in Appendix  
II.  I t  m a y  be shown, therefore, t ha t  the  diagonal 
elements of 1-Ira, which reflect the rel iabi l i ty  of our 
observations on qM(q), do not  lie on a uniform 
funct ion of q, bu t  they  f luctuate with a period similar  
to tha t  of y as i l lustrated in Figs. l(b) and 2(c). 
A reasonable weight mat r ix  l lm can be est imated 
from exper imenta l  am by  el iminat ing non-essential 
irregularities. The process is given in Appendix  II.  
Fig. 2 shows a typical  example  of the dependence of 
~ on q taken  from our recent work on silicon tetra- 
chloride (Merino & Murata,  1965). 

The weight ma t r ix  l l f  for the radial  dis t r ibut ion 
function, f(r) ,  on the other hand,  has off-diagonal 
elements,  which indicate tha t  any  two ' indirect '  
observations on f(r), say f(r) and f (r÷Ar) ,  m a y  be 

Table 1. Dependence of least.squares outputs (most probable values and standard errors) 
on the choice of weight functions (for silicon tetrachloride, in •) 

(a) Leas t - squares  analys is  on qM(q)* 
r(Si-C1) r(CI-C1) /(Si-C1) l(C1-Cl) 

A 2.0180 _ 0.0004 3.2932 ± 0.0008 0.0488 ± 0.0007 0.0894 +_ 0.0011 
B 2.0178 ± 0.0005 3.2936 ± 0.0010 0.0478 +_ 0.0009 0.0888 _+ 0.0014 
C 2.0177 ± 0.0005 3.2950 ± 0.0010 0.0468_+ 0.0010 0.0884 _+ 0.0014 

* Der ived  b y  using the  weight  funct ions  A, B,  and  C. 

A : Ob ta ined  b y  the  process descr ibed in Append ix  I I  (Fig. l(b)). 
B :  The  same as A, b u t  the  f luc tua t ions  of A are a rb i t ra r i ly  smoothed .  
C: An empirical  weight  func t ion  assumed  a priori (Fig. l(a)).  

(b) Leas t - squares  analysis  on f ( r ) t  (r = 0.05 ~ 4.00 A; Ar = 0.05 A) 

r(Si-C1) r(C1-C1) 

I 2"0175 ± 0"0005 3"2927 _ 0-0010 
I I  2"0173 Jr 0"0007 3"2957 ± 0"0010 
I I I  2"0173 -- 0"0010 3"2957 __ 0"0009 
I V  2"0173 ± 0"0006 3"2957 _ 0"0012 

t Ana lyzed  b y  using the  weight  mat r ices  I, I I ,  I I I ,  and  IV. 
I :  
I I :  
I I I :  
IV :  

z(si-cl) ~(Cl-CI) 
0.0474 +__ 0.0010 0.0887 +_ 0.0013 
0.0459 ± 0.0013 0.0887 ± 0.0013 
0.0459 ± 0-0019 0.0891 ± 0.0011 
0 . 0 4 5 9 _  0.0012 0-0885 + 0.0015 

A non-diagonal  weight  ma t r i x  given in equa t ion  (A-27) and  Fig. l(c). 
The  diagonal  un i t  ma t r i x  (PtJ = ~J)- 
A diagonal  ma t r i x  der ived  b y  the  law of the  p ropaga t ion  of errors:  [(GP-ZG*)ii] -1. (Pi1=(~il/ri). 
The diagonal  m a t r i x  emp loyed  b y  B o n h a m  & Bar te l l  (1959) (Pi1=ri26tj). 
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'dependent'. This situation stems from the fact that  
both f(r) and f (r + A r) are functions of all observations 
on qM(q). For the example given in Appendix III,  
the matrix l~s has a simple form as illustrated in 
Fig. l(c). In that  particular case, the ratio of the 
off-diagonal elements for the nearest neighbors to the 
diagonal is -½. Although FIs may in general have a 
more complicated form, it is readily calculated from 
equation (5) by using an electronic computer. I t  is 
likely that  the correlation between f(r) and f(r+ Ar) 
fades out rapidly as the interval dr increases, but the 
off-diagonal elements among the nearest neighbors 
cannot be ignored. 

We ordinarily apply the least-squares method to the 
molecular intensity curve rather than to the radial 
distribution curve, because in the former procedure 
it is not necessary to take into account the molecular 
intensity in the region of q where no experimental 
data are available (e.g. q<10  and q>100), and 
because the weight matrix can be taken as diagonal 
if observations are made at a proper interval. 

I t  is pertinent to examine how the outputs of our 
least-squares analysis (most probable values and their 
standard errors) are dependent on the change in the 
weight functions. I t  may be seen from the example 
given in Table 1 that  in this case the outputs are 
sensitive to the choice of the weights only by as 
much as their standard errors, and the use of a 
conventional weight function (Fig. l(a)) is seemingly 
justified. The situation, however, depends in general 
on the quality of the experiment, and the importance 
of estimating a proper weight function should not be 
overlooked, particularly if one is concerned with a 
small difference in the parameters such as a shrinkage 
effect (Morino, Nakamura & Moore, 1962; Morino, 
Cyvin, Kuchitsu & Iijima, 1962). 

P a r a m e t e r s  to be determined 

It  is well known that  to a good approximation the 
molecular intensity curve has the following expression 
(Bartell, 1955; Morino, Nakamura & Iijima, 1960), 
if the influence of the relative phase shift A~] can 
be included in the effective parameter l, 

qM(q) =.~ k~(A~/r~) exp ( -  ~l~qe/200) 
i 

x sin (~,q/lO)(r~- ~2u~q2/lO0) . (6) 

Accordingly, variable parameters to be determined 
in the analysis are the distances ri (the r= parameters 
(Morino & Iijima, 1962) which are essentially equal 
to Bartell's rg(1) (1955)), the mean amplitudes li, 
the anharmonicity parameters ~ and the indices of 
resolution k~. I t  is seen from equation (6) that  the 
parameters r~ are correlated strongly with z~, and 
also l~ with /c~. Since the parameters ~ for non- 
hydrogen distances are generally small, it often 
happens that  they cannot be determined in a statistical 
sense (Morino, Nakamura & Iijima, 1960; Morino & 

Iijima, 1962). In view of the heavy interdependence 
between r~ and a~, however, the latter should not 
simply be set equal to zero even for non-hydride 
molecules. Instead, ~ must be included at least as 
a finite constant, the order of which may be reasonably 
estimated by approximate theoretical considerations 
(Bartell, Kuchitsu & deNeui, 1961; Kuchitsu & 
Bartell, 1961; Morino & Iijima, 1962). 

I t  seems better to take each index k~ as an inde- 
pendent variable parameter than to assume that  they 
are equal for all atom pairs to be determined. In 
many cases, however, all indices are shown to be 
nearly equal, with standard errors for l~ and k~ some- 
what larger than those derived when they are all 
set equal,* as shown in a typical example of our 
results of silicon tetrachloride listed in Table 2. 

Para-  
m e t e r s t  

.4  a ,  c 

D b ,  c 
E a , d  
F b ,  d 
(7 a , e  

Table 2. Dependence of least-squares outputs on the 
choice of variable parameters 

(SIC14; r and l in A)* 

r(Si-Cl)  r(C1-C1) /(Si-C1) 

2-0180+0.0004  3 .2932±0 .0008  0 .0488±0 .0007  
2 .0180±0 .0004  3.2932___0.0008 0 .0485+0 .0007  
2 .0176±0 .0004  3 .2916±0-0008  0-0488±0-0008 
2 .0176±0-0004  3 .2916±0 .0008  0 .0485±0-0007  
2 .0188±0 .0008  3-2955_+0.0016 0 .0487±0 .0007  

I(CI-CI) k(Si-C1) k(Cl-C1) 

A 0"0894 ± 0.0011 1.081 ± 0.011 1"061 ± 0.018 
D 0.0902 ± 0.0007 1.076 ± 0.009 
E 0"0894+0.0011 1-082 ± 0.012 1"060± 0.019 
F 0"0902 ± 0-0008 1-076 ± 0-010 
G 0"0895 ± 0"0011 1"081 ±0 .011  1-063 ± 0-018 

* Based  on the  weight  ~unctlon A given in Fig.  l(b). 
t a:  Indices  of resolut ion ki var ied  i ndependen t ly .  

b: Bo th  indices t aken  to be equal ~nd v~ried. 
c: A n h a r m o n i c i t y  pa r ame t e r s  ~i t aken  as cons t an t  b y  

a crude theore t ica l  es t imat ion  : n(Si-Cl)-= 1.2 x l0  -s, 
and  n(CI-C1) -- 7.1 × l0 -G in /t~a units .  

d: y.i assumed to  be zero. 
e: ~.~ t aken  as var iable  pa ramete r s ,  the  o u t p u t s  be ing:  

y.(Si-C1) --- (3.3 ± 2.0) × 10 -s, and  n(C1-C1) = (17.3 _ 6-3) 
× 10 -6. 

The  d i sc repancy  be tween  ~.(CI-C1) and  t h a t  e s t ima ted  
in c is no t  to be t aken  as ve ry  significant.  The  un- 
c e r t a i n t y  of the  dis tances  caused by  the  e r ror  in the  
es t imat ion  of ~. is inc luded in the  s t a n d a r d  e r ror  a 
(sys temat ic)  given in Table  4. 

E s t i m a t i o n  of r a n d o m  errors  

A primary basis for estimating random errors is given 
by the standard error in equation (4), which we 
designate as a,. I t  depends on the discrepancy between 
our observations and the theoretical molecular inten- 
sity curve (6) for which an optimized set of parameters 

* Care should  be t aken  because,  for one of the  two var iab le  
pa r ame t e r s  which are closely cor re la ted  wi th  each o ther ,  
an improper ly  smaller  s t anda rd  error  is ob ta ined  when  the  
o the r  is t aken  as cons t an t  t han  when it  is var ied.  (Anderson 
(1958), as c i ted by  Geller (1961)). The  s i tua t ion  is shown in 
Table  2 for r and  x, and  for  l and  k. 
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Fig. 3. Least-squares fit on qM(q) for silicon tetrachloride. 
Solid curve represents the theoretical molecular intensity 
for which the sum of the weighted square deviations from 
the observations (sho~n in dots) is minimized. 

are  chosen,  as i l lus t ra ted  in  Fig.  3. Whi le  al  is a useful  
i nd ica to r  of the  q u a l i t y  of t he  observat ions ,  i t  does 
no t  necessar i ly  reveal  all non - sys t ema t i c  errors. As 
a n o t h e r  useful  measure  of the  r a n d o m  errors,  we m a y  
consider  a s t a n d a r d  dev ia t ion ,  ~9., among  the  mos t  
p robab le  values  of the  pa r ame te r s  ob t a ined  f rom a 
n u m b e r  of i n d e p e n d e n t  sets of observa t ions ,  i.e. f rom 
2/ p h o t o g r a p h i c  p la tes  which  are t a k e n  unde r  as 
nea r ly  ident ica l  expe r imen ta l  condi t ions  as possible 
a n d  are ana lyzed  i nd iv idua l l y  by  the  s t a n d a r d  process 
m e n t i o n e d  above.  The  measures  of the  r a n d o m  errors, 
~1 ( the i n t e rna l  consistency) and  ~2 (the repro- 
ducibi l i ty) ,  should  be of nea r ly  equal  magn i tude ,  
if t he  n u m b e r  /V is suff ic ient ly  large, and  if the re  is 
no  sys temat ic  dev i a t i on  among  the  pla tes  so t h a t  all  
observa t ions  o n / V  pla tes  belong to  a single s ta t i s t ica l  
popu la t ion .*  For  the  m e a n  ampl i tudes  l~, we usua l ly  
o b t a i n  g2 which  is of t he  same m a g n i t u d e  as ~1 
(see Tab le  4). I t  somet imes  happens ,  however ,  t h a t  
t he  ~ for the  d i s tance  pa rame te r s  ri is somewha t  
larger  t h a n  al ,  because sys temat ic  errors (such as the  
error  of t he  scale factor ,  and  the  error  charac ter i s t ic  
of a n y  one of the  pho tog raph i c  plates) ,  which  m a y  no t  
a lways  be e l imina ted  and  which  are no t  inc luded in ~1, 
con t r i bu t e  to  ~9.. I n  such a case, an  analys is  based  
on an  average  curve of 5 / i n t e n s i t i e s  will no t  lead to  
a correct  e s t ima t ion  of the  pa rame te r s  and  the i r  
errors;  i t  is therefore  i m p o r t a n t  to  eva lua te  ~ by  
a set  of ind iv idua l  ana lyses  of 5 / i n d i v i d u a l  i n t ens i t y  
curves. 

B y  t ak ing  a2, one can f ind  ou t  on the  basis of t he  
d i sc repancy  be tween  ol a n d  a2 whe the r  some h idden  
sys temat ic  errors are p resen t  in  the  observat ions ,  
and  whe the r  the  e s t ima t ion  of al  has  a n y  imper fec t ion  
t h a t  makes  a l  of less s ta t i s t ica l  significance, such as 
the  use of an  imprope r  in t e rva l  for  t he  d iagonal  
weigh t  func t ion .  The  es t imates  a~ and  ~e for the  
r a n d o m  errors can  be regarded  as adequa t e  if t h e y  
t u r n  ou t  to  be n e a r l y  equal,  b u t  if not ,  i t  seems 
app rop r i a t e  to  t ake  whichever  is larger  as a s t a n d a r d  

* For the observations on N sets of plates, the o 1 for the 
most probable values of the parameters may be taken as 
1/l/N times the individual standard deviation since in general 
they are all nearly equal. 

error  a, a f te r  a careful  e x a m i n a t i o n  of bo th  al  and  (~2 
in  regard  to  the  origin of the  d i sc repancy  men t ioned  
above.  

I t  is also i m p o r t a n t  to  include in the  es t imates  of 
the  errors the  uncer ta in t i e s  in the  correct ions  for such 
var ious  sys temat ic  errors (Kuchi tsu ,  1959; Morino & 
I i j ima ,  1962) as are l is ted in Table  3. W h e n  the  
m a g n i t u d e  of the  unce r t a in t i e s  of the  correc t ion  is 
no t  known,  i t  is p resumed  to  be a b o u t  50%, or some- 
t imes  100%, of the  original  correct ion.  An  example  
of our  es t imates  for  the  r a n d o m  errors is g iven  in 
Table  4. 

Table  3. Principal origins of systematic errors 

Experimental: Drift of the accelerating voltage 
Errors in the measurement of the wavelength 
Uncertainty in the camera length 
Imperfections in the sector shape 
Finite sample size 
Irregularity in the q scale of the photometer 

chart 
Irregularity in the experimental background 

function 

Theoretical: Failure of the Born approximation 
Uncertainties in the elastic and inelastic 

scattering factors 
Effect of anharmonicity 

Table  4. Estimation of the errors in the parameters 
(sic14; in A) 

Ol (~2 a(syst.)* a(total) 
r(Si-C1) 0.0003 0.0010 0.0009 0.00]4 
r(C1-C1) 0.0006 0.0018 0.0017 0.0025 
/(Si-C1) 0.0005 0.0006 0-0002 0"0006 
I(C1-C1) 0.0007 0"0009 0.0003 0.00l 0 

* Uncertainties in the corrections for systematic errors. 
Principal origins of a(systematic) in this case are the following 
(see Table 3): 

Internuclear distances r(Si-C1) r(C1-Cl) 
Errors in the measurement of the 

wavelength 0.0004 0.0007 
Drift of the accelerating voltage 

(max. 0.05% ) 0.0004 0.0007 
Uncertainty in the camera length 0.0006 0.0010 
Uncertainty in the parameter g 0.0004 0.0010 

Total 0.0009 0.0017 

Mean amplitudes 
Effect of the finite sample size 

/(si-c1) /(c1-c1) 
0.0002 0.0003 

I n  some cases, i t  is conven ien t  to  represent  t he  
' l imi t  of error '  as _+2.5a, which  specifies the  99% 
confidence in te rva l ,  in  the  sense t h a t  t he  p robab i l i t y  
of f inding the  resul t  outs ide  th is  range  is only  less 
t h a n  1% (Morino & I i j ima ,  1962). 

C o n c l u d i n g  r e m a r k s  

As is well known,  an  u l t i m a t e  appra isa l  of t he  accuracy  
of our  expe r imen ta l  and  s ta t i s t ica l  m e t h o d  should  be 
made  possible b y  a compara t i ve  s t u d y  of molecules 
whose s t ruc tures  are exac t ly  k n o w n  by  spectroscopic 
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studies. Since the theoretical background which 
correlates the parameters obtained by electron dif- 
fraction with the spectroscopic parameters has now 
been established both for diatomic (Bartell, 1955) and 
for polyatomie molecules (Merino, Kuchitsu & 0ka, 
1962), there should be no ambiguity in principle 
in this comparison. A systematic study for this 
purpose is now being undertaken in our laboratory, 
and the result will be published in the near future. 
For the carbon disulfide molecule which we have 
studied so far, the agreement of the distances, the 
mean amplitudes, and the shrinkage effect with the 
corresponding spectroscopic values within the claimed 
uncertainties is encouraging, as shown in Table 4 
of the paper by Merino & Iijima (1962). 

A P P E N D I X  I 

W e i g h t  m a t r i x  for ind i rec t  o b s e r v a t i o n s  

Suppose a set of indirect observations ~ is derived 
from a set of direct observations M by linear com- 
binations: 

la = G M .  ( A - l )  

By operating G on equation (1) of the text and by 
denoting GF, GV, and GA by q~, E, and c~ respec- 
tively, we get 

= la-  E = cxX, (A-2) 

which is in a style similar to equation (1). Since the 
condition of least squares should exist among the 
residuals for the direct observations, the condition 
should be the same as that  given by equation (2), 

¥*PV =minimum. 

Our problem is to find a matrix 1-[ in the expression 

E*H E = minimum, 
that  is, 

c~*YIc~X = cx*l-[~, (A-3) 

so that  the normal equations in terms of c~ and 
may be obtained. While G is in general a non-square 
matrix, the problem is conveniently handled by 
means of Lagrange's method of undetermined mul- 
tipliers. The condition is given by 

T = V*PV/2 +/k 'q)  = minimum, (A-4) 
where 

¢ = ~ -  e -  cxX = 0 .  (A-5) 

By taking partial derivatives, it is shown that  

OT/0V= V ' P -  A ' G = 0 ,  

and accordingly, 

A*=V*G*(GP-1G*) -1= e*(GP-1G*) -1, (A-7) 

and that  
~T/OX=-A*c~=O, or cx*A=0. (A-S) 

(A-6) 

Since P is in general a symmetrical matrix, equations 
(A-7) and (A-8) lead to 

a*(GP-1G*)-I e = 0 ,  (A-9) 

and hence, the following set of normal equations 
may be obtained from equation (A-2), 

cc*(GP-1G*)-laX=cc*(GP-1G*)-I~. (A-10) 

Consequently, the least-squares process for indirect 
observations can be made analogous to that  for direct 
observations, provided that  the weight matrix is 
taken as 

1-[ = (GP-1G *)-1. (A-11 ) 

As may be seen from the derivation of equation 
(A-7) from (A-6), the number of the observations 
should not exceed that  of M in order that  the matrix 
(GP-1G *) may be non-singular. 

Although our data are represented by non-linear 
equations, it is well known that  the first-order Taylor 
expansion makes the present argument hold without 
modification, if the parameters X, the observations 
M or ~, and the matrix G are regarded as the correc- 
tions to the trial parameters, the difference between 
the observed and the trial values, and the relevant 
derivative matrix, respectively. I t  can also be shown 
that  the standard error is given by an equation 
analogous to equation (4) with corresponding changes 
in the notation. 

The general formula (A-11) covers the following 
cases t for deriving proper weight matrices 1-[. 

(a) When the column matrices of observations, 
M and ~, are related to each other by one-to-one 
correspondence, i.e. when any one of the la elements, 
#~, depends on only one of the M elements, Ms, 
and vice versa, the matrix G may be taken as diagonal; 
it obviously follows that  1-I is diagonal if P is diagonal, 

I I z =  Pu/ ( G~i)% (A-12) 

(b) When any one of the M elements, M~, is related 
to only one of the l~ elements, /~, whereas one of the 

elements,/~j, is related to more than one M element, 
say Mi, Ml+l, . . . .  Mi+n, G is a rectangular matrix 
with zero cross elements (G~ = 0 for b = j  and 
1 = i, i + 1, . . . ,  i + n, and for k =j and 1 < i or 1 > i + n). 
If P is diagonal, equation (A-11) leads to a diagonal 1-[. 
The procedure is equivalent to that  of the least squares 
where restrictive conditions are present. An example 
of this case is given in Appendix II, where a method 
similar to Deming's curve fitting is applied to the 
measurements of x, y coordinates, in both of which 
experimental errors are involved (Deming, 1946). 

(c) When one of the M elements is related to more 
than one ~ element, off diagonal elements appear in l-I 
even if P is diagonal; the observations ~ are no longer 

t When the matrix il is diagonal, as mentioned in cases 
(a) and (b), equation (A-11) represents the ordinary law of 
propagation of errors. 
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mu tua l l y  independent .  An  example  of this  case is 
given in Appendix  I I I ,  where a non-diagonal weight 
ma t r i x  Hs for the radial  di§tr ibution curve f (r)  is 
derived. 

A P P E N D I X  II 

E s t i m a t i o n  of the  w e i g h t  f u n c t i o n / / m  for  qM(q) 
I n  the sector-microphotometer  method of gas electron 
diffraction, one makes  direct observations on the 
x and  y values of the photometer  record at a certain 
prescribed interval .  W i t h  allowance for the errors 
in  the  measurements  of both  x and y coordinates, 
AIx~ and /ly~ respectively, the least-squares criterion 
for a curve fi t t ing is given by  

Z(px~Ax~ Tpv~Ay~)--minimum. (A-13) 

The weight functions px and py must  be so taken  
tha t  they  are inversely proport ional  to the squared 
s tandard  errors of the measurement  of x and  y values 
respectively. The weight functions px and pu m a y  
be es t imated wi th  less diff iculty t h a n  tha t  for 
qM(q), 1-Ira, since the former are related to the direct 
observables x and y, and  since they  are l ikely to be 
smooth and uniform;  it  is also easier to interpret  
the physical  significance of the  px and  py which are 
de termined by  an  empirical  procedure. 

Our p r imary  problem is to f ind the  mat r ix  G 
which relates qM(q) with  x and y. The indirect  
observations ~ on qM(q) are wri t ten as the following 
difference, 

/~=qM(q)obs-qM(q) talc, (A-14) 

since this is a non-l inear  case. The funct ional  depen- 
dence o f / ,  on x and y is given by  the following rela- 
tions. 

qM(q)obs = q( It/  Ib -- 1) = q([F log10 (yo/y) - Ie]/ I~, -- 1 ) ,  
(A-15) 

and  
q(x)--(40/~) sin [½ tan  -1 (x/axL)], (A-16) 

where the symbols have the following meaning:  

x: the x distance on the photometer  trace from the 
center, 

y and  y0: the y distances of the record and the br ight  
line, respectively, from the dark  line on the 
photometer  trace, 

It, I~, and Ie: the  intensit ies of the  total  scattering, 
the background, and  the extraneous scattering 
respectively, 

F :  the densi ty- in tens i ty  cal ibrat ion function, taken  
as un i ty  in the  present  s tudy (Morino & I i j ima,  
1962), 

qM(q)calo: the  molecular in tens i ty  calculated by  using 
equat ion (6) wi th  assumed values of the para- 
meters,  

ax: the  ratio of the x scale of the chart  to tha t  of the 
original photographic plate (10 in this  case), 

L:  the camera distance, and 
2: the electron wavelength.  

For the  ~ given in equat ion (A-14), the mat r ix  G 
takes the following expression,* 

[ Gx I Gy 1 0 0 0 0 . . . . . .  

G - -  I 0 0 G~ Gy 2 0 0 . . . . . .  , (A-17) 
0 0 0 0 G~ 3 Gy 3 . . . . . .  

( . . .  . . .  . . .  . . .  . . .  . . .  . . .  . . .  

where 

dq r~ _ l _ q  - ~ - q  dq j 

(A-18) 

Gu=(q/Ioau)(SIt/gy)x= - q  log10 e /hauy ,  (A-19) 

and au is the degree of l inear expansion of the  record 
in the y direction (about 5 in this  case). 

According to equations (A-11) through (A-19), 
the weight ma t r ix  l-Ira of a diagonal  form is obtained,  

(IIm)~l 2 -1 2 -1 (A-20) = Gx~pxi + Gyipyi, 

and hence the s tandard  error am of qM(q) is given by  

2 2 2 2 2 Gxaz + (A-21) a m - -  Gy a v , 

where ax and av are the  s tandard  errors of the measure- 
ment  of the x and y values respectively. (See footnote, 
p. 554.) 

The magni tude  of Gx is especially sensit ive to the 
slope of the photometer  curve, and the contr ibut ion 
from ax is impor tan t  in the  region where the y curve 
is steep. Then am is expected to be larger, and hence, 
a less weight is to be assigned to the observations 
of qM(q) in tha t  region. This is the principal  origin 
of the f luctuat ion of rim wi th  q ment ioned in the text.  
An example  is given in Fig. 2. 

A reasonable weight funct ion 1-Ira m a y  be es t imated 
b y  e l iminat ing accidental  irregularities from the  
exper imental  am by  the  following steps: 

(a) Molecular in tens i ty  curves obtained from a 
number  of photographic plates are processed separately 
by  the least-squares method  by  taking an ini t ial  
weight function. 

(b) The s tandard  error am is assigned to qM(q) for 
each q by  taking the square of the difference between 
the observed and calculated qM(q) for several plates 
(i.e. the  expectat ion of the square of residuals). 

* The background lb depends on y, since Ib is drawn 
empirically through the observed y values. For the present 
problem, however, /b ought to have no 'explicit' dependence 
on y. That is, the errors Ay do not interfere with the drawing 
of the I~, and therefore ~Ib/~y=O, since the errors Ay fluc- 
tuate randomly around the true values, and since Ib should 
be a smooth function. It is readily shown from equations 
(A-18) and (A-19) that Gx----(dy/dx)Gy; this agrees with the 
following simple reasoning of the origin of Gx. Suppose the 
measurement of x is in error by Ax. The measurement of y 
must then be in error by (Ay)x= (dy/dx)Ax, which will cause 
qM(q) °bs to be in error by GxAx=Gy(Ay)x=Gy(dy/dx)dx. 
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(c) The  s t a n d a r d  error ax, which  m a y  be t a k e n  as 
c t )ns tant  t h r o u g h  the  p h o t o m e t e r  char t ,  is e s t ima ted  
b y  experience.* 

(d) B y  sub t r ac t i ng  the  con t r ibu t ion  of a~x f rom 
a~, ~ %~ is ob ta ined  for each q b y  us ing equa t ion  
(A-21).  t Since av is considered to  be a s lowly chang ing  
func t ion  of q, t he  av t hus  de r ived  is made  smooth  
b y  ignor ing non-essen t ia l  i r regular i t ies .  (See Fig.  2(a)). 

(e) The  s t a n d a r d  error  a ~  is ob ta ined  f rom the  
smoo thed  av(q) b y  using the  same equa t ion  (A-21),  
as shown in Fig.  2(b), a n d / / ~ ( q )  is t a k e n  to  be a~ 9 
(Fig. l(b)). 

( f)  The  we igh t  func t ion  is m a d e  self-consis tent ,  
ff necessary ,  b y  a recycle  in  which  the  we igh t  func t ion  
1-Ira ob t a ined  in  (e) is used in  the  s tep (a). Most  por t ions  
of the  above  s teps  can  be a u t o m a t i z e d  b y  the  use of 
a n  electronic computer .  

A P P E N D I X  III 

A w e i g h t  m a t r i x  r / I  f o r  t h e  rad ia l  
d i s t r i b u t i o n  c u r v e  

L e t  us  t a k e  an  example  in  wh ich  the  we igh t  func t ion  
1-[~ for qM(q) is r ep resen ted  as 

1-[~(q, q,)=q9 exp (-2bq2)Sqq, .  (A-22) 

Since f ( r )  is g iven  b y  

f ( r )  = qM(q) exp ( - b q  ~) sin (~qr/lO)dq 
0 

- .~Y qM(q) exp ( - b q  2) sin (~qr / lO) ,  (A-23) 
q 

the  e lements  of the  m a t r i x  G are shown to be 

G(r,  q ) = e x p  ( - b q  2) sin (~qr/lO) . (A-24) 

I t  follows f rom equa t ion  (5) of the  t e x t  t h a t  

* The standard error ax is taken as the minimum scale 
division sx (0.1 mm) at present in use in our laboratory for 
measuring the x coordinate of the photometer chart. (The 
record is usually subject to a mechanical linear magnification 
of ten times the x scale on the original photographic plate.) 
By changing the ax values, it is found that  the feature of 
jags which appear in the resulting am 9 depends on ax; the 
output parameters of the least-squares analysis, however, 
are not sensitive to the choice of ~x. The ax taken as Sx is 
regarded as reasonable in this case since the peak values 
of the resulting am ~ in the regions where the effect of qx is 
large are nearly equal to those of the observed (Im 2 curve .  
One could expect an ideal ax to be about sx/2; this, however, 
results in a somewhat worse correspondence with the peak 
values of the observed ffm ~" indicating that the presence of 
other random errors makes the ax to be nearly equal to Sx. 

t For the example given in Fig. 2, the ordinate scale unit 
of ay is taken as the minimum scale division (1/1000 of the 
chart full scale, 24 cm) at present in use in our laboratory 
for measuring the y coordinate of the chart. (The record is 
usually subject to an electronic linear magnification of about 
five times the original y scale.) The random experimental 
error of the measurement O'y is therefore shown to be com- 
parable with the uncertainty associated with the minimum 
scale division. 

~Tl ( r ,  r ') ---- [G~TnlG*J(r, r ') 

- l : q  -2 sin (~qr / lO)s in  (gqr' / lO)dq 

---- (~2/20) m i n  (r, r ') . 

The  m a t r i x  17) -1 is therefore  

I771 = ~2/20 

(A-25)  

r l  r l  r l  r l  r l  . . .  

r l  r2 r2 r2 r2 . . .  
~1 r2 r3 F3 r3 . . .  

r l  r2 r3 r4 r4 . . .  

r l  re r3 r4 r5 . . .  
o o o o o o o o o o o o ° o ° o o o  

(A-26) 

B y  deno t ing  the  difference r n + l - r n  as Ar  a n d  
t a k i n g  the  inverse,  i t  is shown t h a t  t he  we igh t  m a t r i x  
I-Is is g iven  b y  the  fol lowing s imple form 

A-27)  

2O 

~=~-~nr 

r2/rl - 1 0 0 . . . . . . . . . . . . .  
--1 2 - 1  0 . . . . . . . . . . . . .  

0 - 1  2 --1 . . . . . . . . . . . . .  
0 0 - - 1  2 . . . . . . . . . . . . .  

. .  o ° o o o ° ° . , . , o . . o . . ° . . ° . ° . ° ° ° °  

o o o o o . o . o o . . . o . . . . . . o . o o o . o o o o  

. . . . . . . . . . . . . . . .  0 --1 2 --1 

. . . . . . . . . . . . . . . .  0 0 - - 1  1 

I n  th i s  case, all d iagonal  e lements  are equal  excep t  
for those  a t  bo th  ends,  the  differences be ing  t r iv ia l  
for t he  p resen t  cons idera t ion .  Thus  the  r a t io  of t he  
off-diagonal  e lements  for t he  neares t  ne ighbors  to  
t he  d iagona l  is - ½ ,  a n d  all  o ther  off-diagonals  are 
zero. 

The  au tho r s  are i n d e b t e d  to  Prof.  J .  K a k i n o k i  a n d  
Drs  T. Ino  and  K.  K a t a d a  of Osaka  Ci ty  U n i v e r s i t y  
for the i r  va luab le  cr i t ic ism and  advice.  T h e y  are also 
i n d e b t e d  to the  Min i s t ry  of E d u c a t i o n  of J a p a n  for 
the  research  g ran t .  
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The space group of LaA103 below 720 °K, and the compounds NdA103 and PrA1Oa, probably 
i s c m o r p h o u s  at  r o o m  t e m p e r a t u r e .  By B. DEmGHETTI, J .  E. ]3RUM~ELL~R, F. LAVES, K. A. lVIOLLER 
and F. WA:LDNER, Physik-Institut der Universitdt Zi£rich, Institut fi~r Kristallographie und Petrographie der E T H  
Zi~rich, and I B M  Zi~rich, _~escareh Laboratory Riischlikon, Switzerland 

(Received 20 

Geller & Bala  (1956) invest igated :LaA10 a by X-rays 
and found a symmet ry  change at  720 °K ( independent ly  
confirming results of Gr~inicher & Miiller, 1957). Whereas 
LaA10 a has the  ideal perovskite  structttre (i.e. cubic 
wi th  one formula uni t  per cell) above this temperature ,  
a rhombohedral  deformat ion takes place at  720 °K con- 
t inuously increasing with decreasing temperature .  In  
addit ion,  extra  reflexions observed at  room tempera ture  
indicated a doubling of the rhombohedral  c axis. Geller & 
Bala proposed as most  probable the  space _group R3m (D~d) 
with  La in (c) -- 3m + (0, 0, z), A1 in (a) - 3m (0, 0, 0) and 
( b ) - 3 m  (O, O, ½), a n d O i n ( h ) - m  +_ (x~z; x, 2x, z; 2~,~,z) 
if hexagonal  axes are chosen. On the  other  hand,  con- 
sistent  wi th  their  published X-ray data  the  space group 
R-3c (D~g) with La in ( a ) - 3 2  +(0, 0, ¼), A1 in ( b ) - 3  
(0 ,0 ,0;  0,0,½) ~nd o in ( 8 ) - 2  +(~,, 0, ~; 0, x, ¼; ~,~,  ~) 
would also be possible. In  R3m three parameters  would 
be needed to characterize the structure;  however, only 
one would be needed in/~3c, and  the A1 positions would 
be equivalent .  

The nuclear quadrupole resonance measurements  of 
la~La and 27A1 (Mfiller, Brun, Derighet t i ,  Drumhel ler  & 
Waldner,  1964) and  the electron paramagnet ie  measure- 
ments  of crystals doped with Gd a+, Cr 8+ (Kiro, Low & 
Zusman, 1963) and  Fe 3+ (Mfiller et al., 1964) give in- 
format ion on the  point  symmet ry  of the  La and A1 
positions and indicate t ha t  the space group R3m is 
improbable.  F rom the data  on lagLa and Gd a+ one sees 
one La site, its surroundings being axially deformed. 
The da ta  on 27A1 and Cr 3+ show also only one A1 site 
wi th  axially deformed surroundings. The electron para- 
magnet ic  resonance spectrum of Fe a+ consists of two 
sets of lines showing two sets of cubic axes ro ta ted  
along the rhombohedral  c axis, whereas the distances 
to the  nearest  neighbours seem to be equal for both  
sets. The rota t ion angle _+ a is measured to be 6-0 ° + 0.2 ° 
at  298 ° + 3 ° K .  

August 1964) 

Thus, a s tructure wi th  equivalent  La sites and  equiva- 
lent  A1 sites would be more consistent wi th  the  measure- 
ments  men t ioned  above. Only two space groups, R3c 
and R3c, would conform with  the  X-ray  data  and the  
resonance data.  Further ,  the  observed two sets in the  
Fe a+ spectrum could be a t t r ibu ted  to the  two types of 
equivalent  A1 positions which would have in both  space 
groups ro ta ted  near-octahedral  surroundings related by 
glide planes. As there are no data  ye t  known to neces- 
si tate the  assumption of R3c we propose R-3c as the 
most  probable space group for LaA10 v 

The oxygen parameter  x 4:½ is still unknown bu t  
should be strongly tempera ture  dependent .  A calcula- 
t ion from the angle a of the  Fe 3+ spectrum would give 
x=0 .53  at  room tempera ture  in hexagonal coordinates, 
if one neglects possible s tructure deformations by the  
impur i ty  ion. 

From a crystal-chemistry point  of view it is interest ing 
to note  tha t  the more x deviates from ½ the more the  
La coordination number  deviates from 12 (in the  ideal 
perovskite  structure) to 9. As the  compounds NdA10 a 
and PrA10 a are reported to be isomorphous wi th  LaA1Oa 
(Geller & Bala, 1956) it is probable tha t  they  too have 
the  space group R3c. 

The authors are indebted  to R. Jansen  and F. Forra t  
for preparing the Fea+-doped LaAIO a crystal. 

References 

GELLER, S. & BALA, V. B. (1956). Acta Cryst. 9, 1019. 
GRKNICtrER, I t .  & M~LLER, K. A. (1957). Nuovo Cim. 

Suppl. 6, Ser. X, 1216. 
:Kmo, D., Low, W. & ZUSMA~, A. (1963). Prec. First  

In tern .  Conf. Paramagnet ic  Resonance.  Vol. I., 44. 
:New York:  Academic Press. 

M~)'LLER, K.  A.,  BRUN, E. ,  DF.RIGHETTI, B. ,  DRUMHELLER, 
J.  E. & WALDI, mR, F. (1964). Phys. Letters 9, 223. 

A C 18 --  36 


